Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
J Clin Virol ; 157: 105323, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2083110

ABSTRACT

INTRODUCTION: Although most laboratories are capable of employing established protocols to perform full-genome SARS-CoV-2 sequencing, many are unable to assess sequence quality, select appropriate mutation-detection thresholds, or report on the potential clinical significance of mutations in the targets of antiviral therapy METHODS: We describe the technical aspects and benchmark the performance of Sierra SARS-CoV-2, a program designed to perform these functions on user-submitted FASTQ and FASTA sequence files and lists of Spike mutations. Sierra SARS-CoV-2 indicates which sequences contain an unexpectedly large number of unusual mutations and which mutations are associated with reduced susceptibility to clinical stage mAbs, the RdRP inhibitor remdesivir, or the Mpro inhibitor nirmatrelvir RESULTS: To assess the performance of Sierra SARS-CoV-2 on FASTQ files, we applied it to 600 representative FASTQ sequences and compared the results to the COVID-19 EDGE program. To assess its performance on FASTA files, we applied it to nearly one million representative FASTA sequences and compared the results to the GISAID mutation annotation. To assess its performance on mutations lists, we applied it to 13,578 distinct Spike RBD mutation patterns and showed that exactly or partially matching annotations were available for 88% of patterns CONCLUSION: Sierra SARS-CoV-2 leverages previously published data to improve the quality control of submitted viral genomic data and to provide functional annotation on the impact of mutations in the targets of antiviral SARS-CoV-2 therapy. The program can be found at https://covdb.stanford.edu/sierra/sars2/ and its source code at https://github.com/hivdb/sierra-sars2.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Genome, Viral , Drug Resistance, Viral/genetics , Mutation , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Spike Glycoprotein, Coronavirus/genetics
2.
PLoS One ; 17(3): e0261045, 2022.
Article in English | MEDLINE | ID: covidwho-1896433

ABSTRACT

As novel SARS-CoV-2 variants with different patterns of spike protein mutations have emerged, the susceptibility of these variants to neutralization by antibodies has been rapidly assessed. However, neutralization data are generated using different approaches and are scattered across different publications making it difficult for these data to be located and synthesized. The Stanford Coronavirus Resistance Database (CoV-RDB; https://covdb.stanford.edu) is designed to house comprehensively curated published data on the neutralizing susceptibility of SARS-CoV-2 variants and spike mutations to monoclonal antibodies (mAbs), convalescent plasma (CP), and vaccinee plasma (VP). As of December 31, 2021, CoV-RDB encompassed 257 publications including 91 (35%) containing 9,070 neutralizing mAb susceptibility results, 131 (51%) containing 16,773 neutralizing CP susceptibility results, and 178 (69%) containing 33,540 neutralizing VP results. The database also records which spike mutations are selected during in vitro passage of SARS-CoV-2 in the presence of mAbs and which emerge in persons receiving mAbs as treatment. The CoV-RDB interface interactively displays neutralizing susceptibility data at different levels of granularity by filtering and/or aggregating query results according to one or more experimental conditions. The CoV-RDB website provides a companion sequence analysis program that outputs information about mutations present in a submitted sequence and that also assists users in determining the appropriate mutation-detection thresholds for identifying non-consensus amino acids. The most recent data underlying the CoV-RDB can be downloaded in its entirety from a GitHub repository in a documented machine-readable format.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Viral/immunology , COVID-19 Vaccines/immunology , COVID-19/pathology , SARS-CoV-2/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , COVID-19/therapy , COVID-19/virology , Databases, Factual , Humans , Immunization, Passive , Neutralization Tests , SARS-CoV-2/isolation & purification , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/immunology , COVID-19 Serotherapy
3.
Microbiol Spectr ; 10(4): e0092622, 2022 08 31.
Article in English | MEDLINE | ID: covidwho-1891748

ABSTRACT

SARS-CoV-2 Omicron variants contain many mutations in its spike receptor-binding domain, the target of all authorized monoclonal antibodies (MAbs). Determining the extent to which Omicron variants reduced MAb susceptibility is critical to preventing and treating COVID-19. We systematically reviewed PubMed and three preprint servers, last updated 11 April 2022, for the in vitro activity of authorized MAbs against the Omicron variants. Fifty-one studies were eligible, including 50 containing Omicron BA.1 susceptibility data and 17 containing Omicron BA.2 susceptibility data. The first two authorized MAb combinations, bamlanivimab/etesevimab and casirivimab/imdevimab, were largely inactive against the Omicron BA.1 and BA.2 variants. In 34 studies, sotrovimab displayed a median 4.0-fold (interquartile range [IQR]: 2.6 to 6.9) reduction in activity against Omicron BA.1, and in 12 studies, it displayed a median 17-fold (IQR: 13 to 30) reduction in activity against Omicron BA.2. In 15 studies, the combination cilgavimab/tixagevimab displayed a median 86-fold (IQR: 27 to 151) reduction in activity against Omicron BA.1, and in six studies, it displayed a median 5.4-fold (IQR: 3.7 to 6.9) reduction in activity against Omicron BA.2. In eight studies against Omicron BA.1 and six studies against Omicron BA.2, bebtelovimab displayed no reduction in activity. Disparate results between assays were common. For authorized MAbs, 51/268 (19.0%) results for wild-type control variants and 78/348 (22.4%) results for Omicron BA.1 and BA.2 variants were more than 4-fold below or 4-fold above the median result for that MAb. Highly disparate results between published assays indicate a need for improved MAb susceptibility test standardization or interassay calibration. IMPORTANCE Monoclonal antibodies (MAbs) targeting the SARS-CoV-2 spike protein are among the most effective measures for preventing and treating COVID-19. However, SARS-CoV-2 Omicron variants contain many mutations in their spike receptor-binding domains, the target of all authorized MAbs. Therefore, determining the extent to which Omicron variants reduced MAb susceptibility is critical to preventing and treating COVID-19. We identified 51 studies that reported the in vitro susceptibility of the two main Omicron variants BA.1 and BA.2 to therapeutic MAbs in advanced clinical development, including eight authorized individual MAbs and three authorized MAb combinations. We estimated the degree to which different MAbs displayed reduced activity against Omicron variants. The marked loss of activity of many MAbs against Omicron variants underscores the importance of developing MAbs that target conserved regions of spike. Highly disparate results between assays indicate the need for improved MAb susceptibility test standardization.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Antibodies, Monoclonal/therapeutic use , Antibodies, Monoclonal, Humanized , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/therapeutic use , Humans , Neutralization Tests , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus , Viral Envelope Proteins/genetics
4.
Clin Microbiol Rev ; 34(4): e0010921, 2021 12 15.
Article in English | MEDLINE | ID: covidwho-1575724

ABSTRACT

The development of effective antiviral therapy for COVID-19 is critical for those awaiting vaccination, as well as for those who do not respond robustly to vaccination. This review summarizes 1 year of progress in the race to develop antiviral therapies for COVID-19, including research spanning preclinical and clinical drug development efforts, with an emphasis on antiviral compounds that are in clinical development or that are high priorities for clinical development. The review is divided into sections on compounds that inhibit SARS-CoV-2 enzymes, including its polymerase and proteases; compounds that inhibit virus entry, including monoclonal antibodies; interferons; and repurposed drugs that inhibit host processes required for SARS-CoV-2 replication. The review concludes with a summary of the lessons to be learned from SARS-CoV-2 drug development efforts and the challenges to continued progress.


Subject(s)
COVID-19 , SARS-CoV-2 , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Drug Development , Endopeptidases , Humans
5.
Nat Rev Genet ; 22(12): 757-773, 2021 12.
Article in English | MEDLINE | ID: covidwho-1428829

ABSTRACT

The past several months have witnessed the emergence of SARS-CoV-2 variants with novel spike protein mutations that are influencing the epidemiological and clinical aspects of the COVID-19 pandemic. These variants can increase rates of virus transmission and/or increase the risk of reinfection and reduce the protection afforded by neutralizing monoclonal antibodies and vaccination. These variants can therefore enable SARS-CoV-2 to continue its spread in the face of rising population immunity while maintaining or increasing its replication fitness. The identification of four rapidly expanding virus lineages since December 2020, designated variants of concern, has ushered in a new stage of the pandemic. The four variants of concern, the Alpha variant (originally identified in the UK), the Beta variant (originally identified in South Africa), the Gamma variant (originally identified in Brazil) and the Delta variant (originally identified in India), share several mutations with one another as well as with an increasing number of other recently identified SARS-CoV-2 variants. Collectively, these SARS-CoV-2 variants complicate the COVID-19 research agenda and necessitate additional avenues of laboratory, epidemiological and clinical research.


Subject(s)
COVID-19/virology , Mutation , SARS-CoV-2/physiology , SARS-CoV-2/pathogenicity , Biological Evolution , COVID-19/epidemiology , Epitopes/immunology , Humans , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology
6.
Viruses ; 12(9)2020 09 09.
Article in English | MEDLINE | ID: covidwho-760953

ABSTRACT

BACKGROUND: To prioritize the development of antiviral compounds, it is necessary to compare their relative preclinical activity and clinical efficacy. METHODS: We reviewed in vitro, animal model, and clinical studies of candidate anti-coronavirus compounds and placed extracted data in an online relational database. RESULTS: As of August 2020, the Coronavirus Antiviral Research Database (CoV-RDB; covdb.stanford.edu) contained over 2800 cell culture, entry assay, and biochemical experiments, 259 animal model studies, and 73 clinical studies from over 400 published papers. SARS-CoV-2, SARS-CoV, and MERS-CoV account for 85% of the data. Approximately 75% of experiments involved compounds with known or likely mechanisms of action, including monoclonal antibodies and receptor binding inhibitors (21%), viral protease inhibitors (17%), miscellaneous host-acting inhibitors (10%), polymerase inhibitors (9%), interferons (7%), fusion inhibitors (5%), and host protease inhibitors (5%). Of 975 compounds with known or likely mechanism, 135 (14%) are licensed in the U.S. for other indications, 197 (20%) are licensed outside the U.S. or are in human trials, and 595 (61%) are pre-clinical investigational compounds. CONCLUSION: CoV-RDB facilitates comparisons between different candidate antiviral compounds, thereby helping scientists, clinical investigators, public health officials, and funding agencies prioritize the most promising compounds and repurposed drugs for further development.


Subject(s)
Antiviral Agents/pharmacology , Betacoronavirus/drug effects , Coronavirus Infections/drug therapy , Databases, Factual , Pneumonia, Viral/drug therapy , Animals , Antiviral Agents/therapeutic use , COVID-19 , Cells, Cultured , Clinical Trials as Topic , Coronavirus/drug effects , Drug Evaluation, Preclinical , Humans , Mammals , Models, Animal , Pandemics , Registries , SARS-CoV-2 , Species Specificity , User-Computer Interface , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL